HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

TCONS_00230836 silencing restores stearic acid-induced β cell dysfunction through alleviating endoplasmic reticulum stress rather than apoptosis.

AbstractBACKGROUND:
Chronic exposure of pancreatic β cells to high levels of stearic acid (C18:0) leads to impaired insulin secretion, which accelerates the progression of type 2 diabetes mellitus (T2DM). Recently, long noncoding RNAs (lncRNAs) were found to participate in saturated fatty acid-induced metabolism dysfunction. However, their contribution to stearic acid-induced β-cell dysfunction remains largely unknown. This study evaluated the possible role of the lncRNA TCONS_00230836 in stearic acid-stimulated lipotoxicity to β cells.
METHOD:
Using high-throughput RNA-sequencing, TCONS_00230836 was screened out as being exclusively differentially expressed in stearic acid-treated mouse β-TC6 cells. Co-expression network was constructed to reveal the potential mRNAs targeted for lncRNA TCONS_00230836. Changes in this lncRNA's and candidate mRNAs' levels were further assessed by real-time PCR in stearic acid-treated β-TC6 cells and islets of mice fed a high-stearic-acid diet (HSD). The localization of TCONS_00230836 was detected by fluorescent in situ hybridization. The endogenous lncRNA TCONS_00230836 in β-TC6 cells was abrogated by its Smart Silencer.
RESULTS:
TCONS_00230836 was enriched in mouse islets and mainly localized in the cytoplasm. Its expression was significantly increased in stearic acid-treated β-TC6 cells and HSD-fed mouse islets. Knockdown of TCONS_00230836 significantly restored stearic acid-impaired glucose-stimulated insulin secretion through alleviating endoplasmic reticulum stress. However, stearic acid-induced β cell apoptosis was not obviously recovered.
CONCLUSION:
Our findings suggest the involvement of TCONS_00230836 in stearic acid-induced β-cell dysfunction, which provides novel insight into stearic acid-induced lipotoxicity to β cells. Anti-lncRNA TCONS_00230836 might be a new therapeutic strategy for alleviating stearic acid-induced β-cell dysfunction in the progression of T2DM.
AuthorsRui Guo, Yunjin Zhang, Yue Yu, Shenghan Su, Qingrui Zhao, Xia Chu, Shenglong Li, Huimin Lu, Changhao Sun
JournalGenes & nutrition (Genes Nutr) Vol. 16 Issue 1 Pg. 8 (May 22 2021) ISSN: 1555-8932 [Print] Germany
PMID34022799 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: