HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Improvement of the therapeutic capacity of insulin-producing cells trans-differentiated from human liver cells using engineered cell sheet.

AbstractBACKGROUND:
Although pancreatic islet transplantation therapy is ideal for diabetes patients, several hurdles have prevented it from becoming a standard treatment, including donor shortage and low engraftment efficacy. In this study, we prepared insulin-producing cells trans-differentiated from adult human liver cells as a new islet source. Also, cell sheet formation could improve differentiation efficiency and graft survival.
METHODS:
Liver cells were expanded in vitro and trans-differentiated to IPCs using adenovirus vectors carrying human genes for PDX1, NEUROD1, and MAFA. IPCs were seeded on temperature-responsive culture dishes to form cell sheets. Differentiation efficiency was confirmed by ß cell-specific gene expression, insulin production, and immunohistochemistry. IPC suspension was injected by portal vein (PV), and IPC sheet was transplanted on the liver surface of the diabetic nude mouse. The therapeutic effect of IPC sheet was evaluated by comparing blood glucose control, weight gain, histological evaluation, and hepatotoxicity with IPC injection group. Also, cell biodistribution was assessed by in vivo/ex vivo fluorescence image tagging.
RESULTS:
Insulin gene expression and protein production were significantly increased on IPC sheets compared with those in IPCs cultured on conventional culture dishes. Transplanted IPC sheets displayed significantly higher engraftment efficiency and fewer transplanted cells in other organs than injected IPCs, and also lower liver toxicity, improved blood glucose levels, and weight gain. Immunohistochemical analyses of liver tissue revealed positive staining for PDX1 and insulin at 1, 2, and 4 weeks after IPC transplantation.
CONCLUSIONS:
In conclusion, cell sheet formation enhanced the differentiation function and maturation of IPCs in vitro. Additionally, parameters for clinical application such as distribution, therapeutic efficacy, and toxicity were favorable. The cell sheet technique may be used with IPCs derived from various cell sources in clinical applications.
AuthorsYu Na Lee, Hye-Jin Yi, Eun Hye Seo, Jooyun Oh, Song Lee, Sarah Ferber, Teruo Okano, In Kyong Shim, Song Cheol Kim
JournalStem cell research & therapy (Stem Cell Res Ther) Vol. 12 Issue 1 Pg. 3 (01 06 2021) ISSN: 1757-6512 [Electronic] England
PMID33407888 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Insulin
Topics
  • Adult
  • Animals
  • Cell Differentiation
  • Diabetes Mellitus, Experimental (metabolism, therapy)
  • Humans
  • Insulin (metabolism)
  • Insulin-Secreting Cells (metabolism)
  • Liver (metabolism)
  • Tissue Distribution

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: