HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hydrogen gas inhalation alleviates oxidative stress in patients with post-cardiac arrest syndrome.

Abstract
Oxidative stress plays a key role in the pathophysiology of post-cardiac arrest syndrome. Molecular hydrogen reduces oxidative stress and exerts anti-inflammatory effects in an animal model of cardiac arrest. However, its effect on human post-cardiac arrest syndrome is unclear. We consecutively enrolled five comatose post-cardiac arrest patients (three males; mean age, 65 ± 15 years; four cardiogenic, one septic cardiac arrest) and evaluated temporal changes in oxidative stress markers and cytokines with inhaled hydrogen. All patients were treated with target temperature management. Hydrogen gas inhalation (2% hydrogen with titrated oxygen) was initiated upon admission for 18 h. Blood hydrogen concentrations, plasma and urine oxidative stress markers (derivatives of reactive oxygen metabolites, biological antioxidant potential, 8-hydroxy-2'-deoxyguanosine, N ɛ-hexanoyl-lysine, lipid hydroperoxide), and cytokines (interleukin-6 and tumor necrosis factor-α) were measured before and 3, 9, 18, and 24 h after hydrogen gas inhalation. Arterial hydrogen concentration was measurable and it was equilibrated with inhaled hydrogen. Oxidative stress was reduced and cytokine levels were unchanged in cardiogenic patients, whereas oxidative stress was unchanged and cytokine levels were diminished in the septic patient. The effect of inhaled hydrogen on oxidative stress and cytokines in comatose post-cardiac arrest patients remains indefinite because of methodological weaknesses.
AuthorsTomoyoshi Tamura, Masaru Suzuki, Kei Hayashida, Yosuke Kobayashi, Joe Yoshizawa, Takayuki Shibusawa, Motoaki Sano, Shingo Hori, Junichi Sasaki
JournalJournal of clinical biochemistry and nutrition (J Clin Biochem Nutr) Vol. 67 Issue 2 Pg. 214-221 (Sep 2020) ISSN: 0912-0009 [Print] Japan
PMID33041520 (Publication Type: Journal Article)
CopyrightCopyright © 2020 JCBN.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: