HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Going Deep into Synaptic Vesicle Machinery Genes and Migraine Susceptibility - A Case-Control Association Study.

AbstractOBJECTIVE:
A number of observations, including among our study population, have implicated variants in the syntaxin-1A, a component of the synaptic vesicles, in migraine susceptibility. Therefore, we hypothesize that variants in other components of the vesicle machinery are involved in migraine.
BACKGROUND:
Migraine is a common and complex neurologic disorder that affects approximately 15-18% of the general population. The exact cause of migraine is unknown; however, genetic studies have made possible substantial progress toward the identification of underlying molecular pathways. Neurotransmitters have been for long considered to have a key role in migraine pathophysiology; so we investigated common variants in genes involved in the synaptic vesicle machinery and their impact in migraine susceptibility.
METHODS:
We performed a case-control study comprising 188 unrelated patients with headache and 286 healthy controls in a population from the north of Portugal. Benefiting from the presence of linkage disequilibrium, we selected and genotyped 119 tagging single-nucleotide polymorphisms in 18 genes.
RESULTS:
We found significant associations between single-nucleotide variants and migraine in 7 genes, SYN1, SYN2, SNAP25, VAMP2, STXBP1, STXBP5, and UNC13A, either conferring an increased risk or protection of migraine. Due to SYN1 X-chromosomal location, we performed the statistical analysis separated by gender and, in the female group, the C allele of rs5906435 increased the risk for migraine susceptibility (P = .021; OR = 1.69; 95% CI: 1.21-2.34). In contrast, the TT genotype of the same variant emerged as a potential protective factor (P = .003; OR = 0.45; 95% CI: 0.27-0.74). The SYN2 analysis supported the rs3773364's G allele (P = .014) as a risk factor for migraine, and although not statistically significant after correction, the AG genotype (P = .006; OR = 1.86; 95% CI: 1.20-2.90) reinforced the allelic findings. Additionally, we found the SNAP25-rs363039's CT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34), the STXBP5-rs1765028's T allele (P = .041; OR = 1.46; 95% CI: 1.13-1.90), and the UNC13B-rs7851161's TT genotype (P = .001; OR = 2.14; 95% CI: 1.36-3.34) as statistically significant risk factors for migraine liability. VAMP2-rs1150's G allele revealed a risk association to migraine, not statistically significant after correction (P = .068). Additionally, we found haplotypes in SYN1, SYN2, STXBP1, and UNC13B to be associated with migraine.
CONCLUSIONS:
Overall, this study provides a new insight into migraine liability, identifying possible starting points for functional studies.
AuthorsMarlene Quintas, João Luís Neto, Jorge Sequeiros, Alda Sousa, José Pereira-Monteiro, Carolina Lemos, Isabel Alonso
JournalHeadache (Headache) Vol. 60 Issue 10 Pg. 2152-2165 (Nov 2020) ISSN: 1526-4610 [Electronic] United States
PMID32979221 (Publication Type: Journal Article)
Copyright© 2020 American Headache Society.
Topics
  • Adult
  • Case-Control Studies
  • Female
  • Humans
  • Linkage Disequilibrium
  • Male
  • Middle Aged
  • Migraine Disorders (genetics)
  • Polymorphism, Single Nucleotide
  • Portugal
  • Synaptic Vesicles (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: