HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI.

Abstract
Serum biomarkers are promising tools for evaluating patients following traumatic brain injury (TBI). However, their relationship with diffuse histopathology remains unclear. Additionally, translatability is a focus of neurotrauma research, however, studies using translational animal models are limited. Here, we evaluated associations between circulating biomarkers and acute thalamic histopathology in a translational micro pig model of mTBI. Serum samples were collected pre-injury, and 1 min-6 h following mTBI. Markers of neuronal injury (Ubiquitin Carboxy-terminal Hydrolase L1 [UCH-L1]), microglial/macrophage activation (Ionized calcium binding adaptor molecule-1 [Iba-1]) and interleukin-6 [IL-6]) and astrogliosis/astrocyte damage (glial fibrillary acidic protein [GFAP]) were measured. Axonal injury and histological features of neurons and glia were also investigated using immunofluorescent labeling and correlated to serum levels of the associated biomarkers. Consistent with prior experimental and human studies, GFAP, was highest at 6 h post-injury, while no substantial changes were observed in UCH-L1, Iba-1 or IL-6 over 6 h. This study also found promising associations between thalamic glial histological signatures and ensuing release of Iba-1 and GFAP into the circulation. Our findings suggest that in diffuse injury, monitoring serum Iba-1 and GFAP levels can provide clinically relevant insight into the underlying acute pathophysiology and biomarker release kinetics following mTBI, providing previously underappreciated diagnostic capability.
AuthorsAudrey D Lafrenaye, Stefania Mondello, Kevin K Wang, Zhihui Yang, John T Povlishock, Karen Gorse, Susan Walker, Ronald L Hayes, Patrick M Kochanek
JournalScientific reports (Sci Rep) Vol. 10 Issue 1 Pg. 13369 (08 07 2020) ISSN: 2045-2322 [Electronic] England
PMID32770054 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Biomarkers
  • Calcium-Binding Proteins
  • Glial Fibrillary Acidic Protein
  • Interleukin-6
  • Ubiquitin Thiolesterase
Topics
  • Animals
  • Biomarkers (blood)
  • Blood-Brain Barrier (pathology)
  • Brain Injuries, Traumatic (blood, pathology, physiopathology)
  • Calcium-Binding Proteins (blood)
  • Disease Models, Animal
  • Glial Fibrillary Acidic Protein (blood)
  • Interleukin-6 (blood)
  • Macrophage Activation
  • Male
  • Microglia (pathology)
  • Microscopy, Electron
  • Swine
  • Swine, Miniature
  • Thalamus (injuries, pathology, physiopathology)
  • Time Factors
  • Ubiquitin Thiolesterase (blood)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: