HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Flexible Phase I-II design for partially ordered regimens with application to therapeutic cancer vaccines.

Abstract
Existing methodology for the design of Phase I-II studies has been intended to search for the optimal regimen, based on a trade-off between toxicity and efficacy, from a set of regimens comprised of doses of a new agent. The underlying assumptions guiding allocation are that the dose-toxicity curve is monotonically increasing, and that the dose-efficacy curve either plateaus or decreases beyond an intermediate dose. This article considers the problem of designing Phase I-II studies that violate these assumptions for both outcomes. The motivating application studies regimens that are not defined by doses of a new agent, but rather a peptide vaccine plus novel adjuvants for the treatment of melanoma. All doses of each adjuvant are fixed, and the regimens vary by the number and selection of adjuvants. This structure produces regimen-toxicity curves that are partially ordered, and regimen-efficacy curves that may deviate from a plateau or unimodal shape. Application of a Bayesian model-based design is described in determining the optimal biologic regimen, based on bivariate binary measures of toxicity and biologic activity. A simulation study of the design's operating characteristics is conducted, and its versatility in handling other Phase I-II problems is discussed.
AuthorsNolan A Wages, Craig L Slingluff Jr
JournalStatistics in biosciences (Stat Biosci) Vol. 12 Issue 2 Pg. 104-123 (Jul 2020) ISSN: 1867-1764 [Print] United States
PMID32550936 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: