HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Modifying Autoantigen in Graves' Disease.

Abstract
The TSH receptor (TSHR) is the major autoantigen in Graves' disease (GD). Bioinformatic analyses predict the existence of several human TSHR isoforms from alternative splicing, which can lead to the coexpression of multiple receptor forms. The most abundant of these is TSHRv1.3. In silico modeling of TSHRv1.3 demonstrated the structural integrity of this truncated receptor isoform and its potential binding of TSH. Tissue profiling revealed wide expression of TSHRv1.3, with a predominant presence in thyroid, bone marrow, thymus, and adipose tissue. To gain insight into the role of this v1.3 receptor isoform in thyroid pathophysiology, we cloned the entire open reading frame into a mammalian expression vector. Immunoprecipitation studies demonstrated that both TSHR-stimulating antibody and human TSH could bind v1.3. Furthermore, TSHRv1.3 inhibited the stimulatory effect of TSH and TSHR-Ab MS-1 antibody on TSHR-induced cAMP generation in a dose-dependent manner. To confirm the antigenicity of v1.3, we used a peptide ELISA against two different epitopes. Of 13 GD samples, 11 (84.6%) were positive for a carboxy terminal peptide and 10 (76.9%) were positive with a junction region peptide. To demonstrate that intracellular v1.3 could serve as an autoantigen and modulate disease, we used double-transfected Chinese hamster ovary cells that expressed both green fluorescent protein (GFP)-tagged TSHRv1.3 and full-length TSHR. We then induced cell stress and apoptosis using a TSHR monoclonal antibody and observed the culture supernatant contained v1.3-GFP protein, demonstrating the release of the intracellular receptor variant by this mechanism.
AuthorsRauf Latif, Mihaly Mezei, Syed A Morshed, Risheng Ma, Rachel Ehrlich, Terry F Davies
JournalEndocrinology (Endocrinology) Vol. 160 Issue 5 Pg. 1008-1020 (05 01 2019) ISSN: 1945-7170 [Electronic] United States
PMID30822352 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2019 Endocrine Society.
Chemical References
  • Autoantibodies
  • Autoantigens
  • Immunoglobulins, Thyroid-Stimulating
  • Protein Isoforms
  • Receptors, Thyrotropin
  • thyrotropin-binding inhibitory immunoglobulin
  • Thyrotropin
Topics
  • Amino Acid Sequence
  • Animals
  • Autoantibodies (immunology, metabolism)
  • Autoantigens (metabolism)
  • Base Sequence
  • CHO Cells
  • Cricetinae
  • Cricetulus
  • Graves Disease (genetics, immunology, metabolism)
  • HEK293 Cells
  • Humans
  • Immunoglobulins, Thyroid-Stimulating (immunology, metabolism)
  • Molecular Dynamics Simulation
  • Protein Binding
  • Protein Isoforms (chemistry, genetics, metabolism)
  • Receptors, Thyrotropin (genetics, immunology, metabolism)
  • Thyrotropin (chemistry, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: