HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Combination of Memantine and 6-Chlorotacrine as Novel Multi-Target Compound against Alzheimer's Disease.

AbstractBACKGROUND:
Alzheimer's disease (AD) is the most common form of dementia in the elderly. It is characterized as a multi-factorial disorder with a prevalent genetic component. Due to the unknown etiology, current treatment based on acetylcholinesterase (AChE) inhibitors and N-methyl-D-aspartate receptors (NMDAR) antagonist is effective only temporary. It seems that curative treatment will necessarily be complex due to the multifactorial nature of the disease. In this context, the so-called "multi-targeting" approach has been established.
OBJECTIVES:
The aim of this study was to develop a multi-target-directed ligand (MTDL) combining the support for the cholinergic system by inhibition of AChE and at the same time ameliorating the burden caused by glutamate excitotoxicity mediated by the NMDAR receptors.
METHODS:
We have applied common approaches of organic chemistry to prepare a hybrid of 6-chlorotacrine and memantine. Then, we investigated its blocking ability towards AChE and NMDRS in vitro, as well as its neuroprotective efficacy in vivo in the model of NMDA-induced lessions. We also studied cytotoxic potential of the compound and predicted the ability to cross the blood-brain barrier.
RESULTS:
A novel molecule formed by combination of 6-chlorotacrine and memantine proved to be a promising multipotent hybrid capable of blocking the action of AChE as well as NMDARs. The presented hybrid surpassed the AChE inhibitory activity of the parent compound 6-Cl-THA twofold. According to results it has been revealed that our novel hybrid blocks NMDARs in the same manner as memantine, potently inhibits AChE and is predicted to cross the blood-brain barrier via passive diffusion. Finally, the MTDL design strategy was indicated by in vivo results which showed that the novel 6-Cl-THA-memantine hybrid displayed a quantitatively better neuroprotective effect than the parent compound memantine.
CONCLUSION:
We conclude that the combination of two pharmacophores with a synergistic mechanism of action into a single molecule offers great potential for the treatment of CNS disorders associated with cognitive decline and/or excitotoxicity mediated by NMDARs.
AuthorsMartina Kaniakova, Eugenie Nepovimova, Lenka Kleteckova, Kristyna Skrenkova, Kristina Holubova, Zofia Chrienova, Vendula Hepnarova, Tomas Kucera, Tereza Kobrlova, Karel Vales, Jan Korabecny, Ondrej Soukup, Martin Horak
JournalCurrent Alzheimer research (Curr Alzheimer Res) Vol. 16 Issue 9 Pg. 821-833 ( 2019) ISSN: 1875-5828 [Electronic] United Arab Emirates
PMID30819076 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright© Bentham Science Publishers; For any queries, please email at [email protected].
Chemical References
  • 6-chlorotacrine
  • Cholinesterase Inhibitors
  • Ligands
  • Neuroprotective Agents
  • Receptors, N-Methyl-D-Aspartate
  • Glutamic Acid
  • Tacrine
  • Acetylcholinesterase
  • Memantine
Topics
  • Acetylcholinesterase (metabolism)
  • Alzheimer Disease (drug therapy, metabolism)
  • Animals
  • Blood-Brain Barrier (drug effects, metabolism)
  • CHO Cells
  • Capillary Permeability
  • Cell Survival (drug effects)
  • Cholinesterase Inhibitors (chemical synthesis, pharmacology)
  • Cricetulus
  • Glutamic Acid (metabolism)
  • HEK293 Cells
  • Humans
  • Ligands
  • Male
  • Memantine (chemical synthesis, pharmacology)
  • Molecular Docking Simulation
  • Neuroprotective Agents (chemical synthesis, pharmacology)
  • Rats, Wistar
  • Receptors, N-Methyl-D-Aspartate (antagonists & inhibitors, metabolism)
  • Tacrine (analogs & derivatives, chemical synthesis, pharmacology)
  • Tissue Culture Techniques

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: