HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Understanding the role of dopamine in conditioned and unconditioned fear.

Abstract
Pharmacological and molecular imaging studies in anxiety disorders have primarily focused on the serotonin system. In the meantime, dopamine has been known as the neurotransmitter of reward for 60 years, particularly for its action in the nervous terminals of the mesocorticolimbic system. Interest in the mediation by dopamine of the well-known brain aversion system has grown recently, particularly given recent evidence obtained on the role of D2 dopamine receptors in unconditioned fear. However, it has been established that excitation of the mesocorticolimbic pathway, originating from dopaminergic (DA) neurons from the ventral tegmental area (VTA), is relevant for the development of anxiety. Among the forebrain regions innervated by this pathway, the amygdala is an essential component of the neural circuitry of conditioned fear. Current findings indicate that the dopamine D2 receptor-signaling pathway connecting the VTA to the basolateral amygdala modulates fear and anxiety, whereas neural circuits in the midbrain tectum underlie the expression of innate fear. The A13 nucleus of the zona incerta is proposed as the origin of these DA neurons projecting to caudal structures of the brain aversion system. In this article we review data obtained in studies showing that DA receptor-mediated mechanisms on ascending or descending DA pathways play opposing roles in fear/anxiety processes. Dopamine appears to mediate conditioned fear by acting at rostral levels of the brain and regulate unconditioned fear at the midbrain level.
AuthorsMarcus L Brandão, Norberto C Coimbra
JournalReviews in the neurosciences (Rev Neurosci) Vol. 30 Issue 3 Pg. 325-337 (04 24 2019) ISSN: 2191-0200 [Electronic] Germany
PMID30179855 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Review)
Chemical References
  • Dopamine
Topics
  • Animals
  • Anxiety (metabolism)
  • Anxiety Disorders (metabolism)
  • Dopamine (metabolism)
  • Fear (physiology)
  • Humans
  • Reward
  • Ventral Tegmental Area (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: