HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway.

Abstract
Microglia activation and its mediated production of proinflammatory mediators play important roles in different neurodegenerative diseases; hence, modulation of microglia activation has been considered a potential therapeutic strategy to ameliorate neurodegeneration. This study was aimed to determine whether Gastrodin, a common herbal agent known to possess neuroprotective property, can attenuate production of proinflammatory mediators in activated microglia through the renin-angiotensin system (RAS) and Sirtuin3 (SIRT3). Expression of various members of the RAS including ACE, AT1, AT2, and SIRT3 in activated microglia was assessed by immunofluorescence and Western blot in hypoxic-ischemia brain damage (HIBD) in postnatal rats, and in BV-2 microglia in vitro challenged with lipopolysaccharide (LPS) with or without Gastrodin treatment. Expression of NOX-2, a subunit of NADPH oxidase, and proinflammatory mediators including iNOS and TNF-α, was also evaluated. The present results showed that expression of ACE, AT1, NOX-2, iNOS and TNF-α was markedly increased in activated microglia in the corpus callosum of HIBD rats, and in LPS stimulated BV-2 microglia. Remarkably, the expression was markedly attenuated following Gastrodin treatment. Conversely, Gastrodin enhanced AT2 and SIRT3 protein expression. In BV-2 microglia treated with Azilsartan, a specific inhibitor of AT1 (AT1I group), NOX-2 expression was decreased whereas that of SIRT3 in LPS + AT1I and LPS + Gastrodin group was increased when compared with the controls. In LPS + AT1I + Gastrodin group, SIRT3 expression was further augmented. More importantly, Gastrodin effectively reduced caspase 3 protein expression level in the HIBD rats coupled with a significant decrease in caspase 3 positive cells. We conclude that Gastrodin can exert its protective effects against the hypoxic-ischemia brain damage in the present experimental HIBD model. It is suggested that this is mainly through suppression of expression of RAS (except for AT2 and SIRT3) and proinflammatory mediators e.g. TNF-α in activated microglia.
AuthorsShun-Jin Liu, Xiao-Yu Liu, Jing-Hui Li, Jing Guo, Fan Li, Yang Gui, Xiu-Hua Li, Li Yang, Chun-Yun Wu, Yun Yuan, Juan-Juan Li
JournalNeurochemistry international (Neurochem Int) Vol. 120 Pg. 49-63 (11 2018) ISSN: 1872-9754 [Electronic] England
PMID30075231 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2018 Elsevier Ltd. All rights reserved.
Chemical References
  • Benzyl Alcohols
  • Glucosides
  • Inflammation Mediators
  • Lipopolysaccharides
  • gastrodin
  • NADPH Oxidases
  • Sirtuin 3
Topics
  • Animals
  • Benzyl Alcohols (pharmacology)
  • Glucosides (pharmacology)
  • Inflammation Mediators (metabolism)
  • Lipopolysaccharides (pharmacology)
  • Microglia (drug effects, metabolism)
  • NADPH Oxidases (metabolism)
  • Neurodegenerative Diseases (metabolism)
  • Rats, Sprague-Dawley
  • Renin-Angiotensin System (drug effects)
  • Sirtuin 3 (drug effects, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: