HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor.

Abstract
The function of melatonin as a protective agent against newborn hypoxic-ischemic (H-I) brain injury is not yet well studied, and the mechanisms by which melatonin causes neuroprotection in neurological diseases are still evolving. This study was designed to investigate whether expression of MT1 receptors is reduced in newborn H-I brain injury and whether the protective action of melatonin is by alterations of the MT1 receptors. We demonstrated that there was significant reduction in MT1 receptors in ischemic brain of mouse pups in vivo following H-I brain injury and that melatonin offers neuroprotection through upregulation of MT1 receptors. The role of MT1 receptors was further supported by observation of increased mortality in MT1 knockout mice following H-I brain injury and the reversal of the inhibitory role of melatonin on mitochondrial cell death pathways by the melatonin receptor antagonist, luzindole. These data demonstrate that melatonin mediates its neuroprotective effect in mouse models of newborn H-I brain injury, at least in part, by the restoration of MT1 receptors, the inhibition of mitochondrial cell death pathways and the suppression of astrocytic and microglial activation.
AuthorsBharati Sinha, Qiaofeng Wu, Wei Li, Yanyang Tu, Ana C Sirianni, Yanchun Chen, Jiying Jiang, Xinmu Zhang, Wu Chen, Shuanhu Zhou, Russel J Reiter, Simon M Manning, Nirav J Patel, Ali M Aziz-Sultan, Terrie E Inder, Robert M Friedlander, Jianfang Fu, Xin Wang
JournalJournal of pineal research (J Pineal Res) Vol. 64 Issue 1 (Jan 2018) ISSN: 1600-079X [Electronic] England
PMID28796402 (Publication Type: Journal Article)
Copyright© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Chemical References
  • Receptor, Melatonin, MT1
  • Melatonin
Topics
  • Animals
  • Astrocytes (cytology)
  • Blotting, Western
  • Cells, Cultured
  • Female
  • Genotype
  • Hippocampus (cytology)
  • Hypoxia-Ischemia, Brain (drug therapy, metabolism)
  • Immunohistochemistry
  • Male
  • Melatonin (therapeutic use)
  • Membrane Potentials (physiology)
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Models, Theoretical
  • Receptor, Melatonin, MT1 (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: