HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The involvement of hydrogen-producing and ATP-dependent NADPH-consuming pathways in setting the redox poise in the chloroplast of Chlamydomonas reinhardtii in anoxia.

Abstract
Photosynthetic microalgae are exposed to changing environmental conditions. In particular, microbes found in ponds or soils often face hypoxia or even anoxia, and this severely impacts their physiology. Chlamydomonas reinhardtii is one among such photosynthetic microorganisms recognized for its unusual wealth of fermentative pathways and the extensive remodeling of its metabolism upon the switch to anaerobic conditions. As regards the photosynthetic electron transfer, this remodeling encompasses a strong limitation of the electron flow downstream of photosystem I. Here, we further characterize the origin of this limitation. We show that it stems from the strong reducing pressure that builds up upon the onset of anoxia, and this pressure can be relieved either by the light-induced synthesis of ATP, which promotes the consumption of reducing equivalents, or by the progressive activation of the hydrogenase pathway, which provides an electron transfer pathway alternative to the CO2 fixation cycle.
AuthorsSophie Clowez, Damien Godaux, Pierre Cardol, Francis-André Wollman, Fabrice Rappaport
JournalThe Journal of biological chemistry (J Biol Chem) Vol. 290 Issue 13 Pg. 8666-76 (Mar 27 2015) ISSN: 1083-351X [Electronic] United States
PMID25691575 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Chemical References
  • Photosystem I Protein Complex
  • NADP
  • Hydrogen
  • Adenosine Triphosphate
  • Oxygen
Topics
  • Adenosine Triphosphate (metabolism)
  • Anaerobiosis
  • Chlamydomonas reinhardtii (metabolism)
  • Chloroplasts (metabolism)
  • Hydrogen (metabolism)
  • NADP (metabolism)
  • Oxidation-Reduction
  • Oxygen (metabolism)
  • Photosystem I Protein Complex (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: