HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine.

Abstract
In a wide range of neuroblastoma-derived lines oxovanadium compounds such as bis(maltolato)oxovanadium(IV) (BMOV) are cytotoxic. This is not explained by oxidative stress or inhibition of ion channels. Genotoxicity is unlikely given that a p53 response is absent and p53-mutant lines are also sensitive. Cytotoxicity is inhibited by N-acetyl cysteine and glutathione ester, indicating that BMOV action is sensitive to cytoplasmic redox and thiol status. Significantly, combining BMOV with glutathione synthesis inhibition greatly enhances BMOV-induced cell death. This combination treatment triggers high AKT pathway activation, highlighting the potential functional importance of PTP inhibition by BMOV. AKT activation itself, however, is not required for cytotoxicity. Oxovanadium compounds may thus represent novel leads as p53-independent therapeutics for neuroblastoma.
AuthorsOwen Clark, Inhye Park, Alessia Di Florio, Ann-Christin Cichon, Sarah Rustin, Roman Jugov, Ruhina Maeshima, Andrew W Stoker
JournalCancer letters (Cancer Lett) Vol. 357 Issue 1 Pg. 316-327 (Feb 01 2015) ISSN: 1872-7980 [Electronic] Ireland
PMID25444896 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Chemical References
  • Pyrones
  • bis(maltolato)oxovanadium(IV)
  • Vanadates
  • Buthionine Sulfoximine
Topics
  • Animals
  • Antineoplastic Combined Chemotherapy Protocols (pharmacology)
  • Buthionine Sulfoximine (administration & dosage, pharmacology)
  • Cell Line, Tumor
  • Drug Synergism
  • Fibroblasts (drug effects)
  • Humans
  • Mice
  • Neuroblastoma (drug therapy, metabolism)
  • Oxidation-Reduction
  • Pyrones (administration & dosage, pharmacology)
  • Signal Transduction
  • Transfection
  • Vanadates (administration & dosage, pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: