HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Early bond strength of two resin cements to Y-TZP ceramic using MPS or MPS/4-META silanes.

Abstract
For cementation of yttrium-stabilized tetragonal zirconium polycrystal (Y-TZP) ceramic frameworks, protocols of surface-conditioning methods and available cements vary, resulting in confusion among clinicians regarding selection and effects of different conditioning methods on cement adhesion. This study evaluated the effect of two silanes (3-trimethoxysilylpropylmethacrylate (MPS) and 3-trimethoxysilylpropylmethacrylate/4-methacryloyloxyethyl trimellitate anhydride methyl methacrylate (MPS/4-META) on the adhesion of two resin-based cements (SuperBond and Panavia F 2.0) to Y-TZP ceramic and compared several protocols with those indicated by the manufacturer of each of these cements. Disks of Y-TZP ceramic (LAVA, 3M ESPE) (n = 60) were divided into six experimental groups (n = 10 per group) and treated as follows: (1) silica coating (SC) + MPS silane + SuperBond; (2) SC + MPS/4-META + silane + SuperBond); (3) SC + MPS silane + Panavia F 2.0); (4) SC + MPS/4-META silane + Panavia F 2.0); (5) no conditioning + MPS/4-META silane + Super-Bond (SuperBond instructions); and (6) 50-μm Al(2)O(3) conditioning + Panavia F 2.0 (Panavia F 2.0 instructions). The specimens were subjected to shear-bond testing after water storage at 37 °C for 3 months in the dark. Data were analyzed by analysis of variance and Tukey's HSD (α = 0.05). After silica coating, the mean bond strength of SuperBond cement was not significantly different between MPS and MPS/4-META silanes (20.2 ± 3.7 and 20.9 ± 1.6 MPa, respectively), but the mean bond strength of Panavia F 2.0 was significantly higher with MPS silane (24.4 ± 5.3 MPa) than with MPS/4-META (12.3 ± 1.4 MPa) (P < 0.001). The SuperBond manufacturer's instructions alone resulted in significantly higher bond strength (9.7 ± 3.1 MPa) than the Panavia F 2.0 manufacturer's instruction (0 MPa) (P < 0.001). When silica coating and silanization were used, both SuperBond and Panavia F 2.0 cements demonstrated higher bond strengths they did when the manufacturers' instructions were followed. With SuperBond, use of MPS or MPS/4-META silane resulted in no significant difference when the ceramic surface was silica coated, but with Panavia F 2.0, use of MPS silane resulted in a significantly higher bond strength than use of MPS/4-META. Use of chairside silica coating and silanization to condition the zirconia surface improved adhesion compared with the manufacturers' cementation protocols for SuperBond and Panavia F 2.0 resin cements.
AuthorsMutlu Özcan, Cenk Cura, Luiz Felipe Valandro
JournalOdontology (Odontology) Vol. 99 Issue 1 Pg. 62-67 (Jan 2011) ISSN: 1618-1255 [Electronic] Japan
PMID21271328 (Publication Type: Journal Article)
Chemical References
  • Drug Combinations
  • Methacrylates
  • Resin Cements
  • Silanes
  • Trimethylsilyl Compounds
  • poly(trimethoxysilylpropyl methacrylate)
  • yttria stabilized tetragonal zirconia
  • Dental Porcelain
  • Yttrium
  • 4-methacryloxyethyltrimellitic acid anhydride
  • Zirconium
Topics
  • Dental Bonding
  • Dental Porcelain
  • Dental Stress Analysis
  • Drug Combinations
  • Materials Testing
  • Methacrylates
  • Resin Cements
  • Silanes
  • Surface Properties
  • Trimethylsilyl Compounds
  • Yttrium
  • Zirconium

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: