HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The central melanocortin system directly controls peripheral lipid metabolism.

Abstract
Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.
AuthorsRuben Nogueiras, Petra Wiedmer, Diego Perez-Tilve, Christelle Veyrat-Durebex, Julia M Keogh, Gregory M Sutton, Paul T Pfluger, Tamara R Castaneda, Susanne Neschen, Susanna M Hofmann, Philip N Howles, Donald A Morgan, Stephen C Benoit, Ildiko Szanto, Brigitte Schrott, Annette Schürmann, Hans-Georg Joost, Craig Hammond, David Y Hui, Stephen C Woods, Kamal Rahmouni, Andrew A Butler, I Sadaf Farooqi, Stephen O'Rahilly, Françoise Rohner-Jeanrenaud, Matthias H Tschöp
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 117 Issue 11 Pg. 3475-88 (Nov 2007) ISSN: 0021-9738 [Print] United States
PMID17885689 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Insulin
  • Melanocortins
  • Receptor, Melanocortin, Type 4
  • Receptors, Melanocortin
  • acetyl-norleucyl(4)-(aspartyl(5)-histidyl(6)-phenylalanyl(7)-arginyl(8)-tryptophyl(9)-lysyl(10))cyclo-alpha-MSH(4-10)amide
  • SHU 9119
  • alpha-MSH
  • Melanocyte-Stimulating Hormones
  • Glucose
Topics
  • Adipocytes (cytology, metabolism)
  • Adipose Tissue (cytology, metabolism)
  • Animals
  • Behavior, Animal (physiology)
  • Central Nervous System (metabolism)
  • Eating
  • Glucose (metabolism)
  • Humans
  • Insulin (metabolism)
  • Lipid Metabolism
  • Melanocortins (metabolism)
  • Melanocyte-Stimulating Hormones (administration & dosage, metabolism)
  • Mice
  • Mice, Knockout
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, Melanocortin, Type 4 (genetics, metabolism)
  • Receptors, Melanocortin
  • Signal Transduction (physiology)
  • alpha-MSH (administration & dosage, analogs & derivatives, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: