HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Isobenzofurans as conformationally constrained miconazole analogues with improved antifungal potency.

Abstract
A series of halogen-substituted isobenzofuran analogues was synthesized, which represented conformationally constrained analogues of miconazole (1). In vitro and in vivo topical antifungal activity against both dermatophytes and Candida species varied widely, but 13c proved to be significantly superior to both 1 and clotrimazole against a vaginal Candida infection in hamsters, while 13b was significantly more active than 1 against a a topical Trichophyton infection in guinea pigs. None of the compounds were orally active. When the most direct analogue of 1 proved to be among the least active, a molecular modeling study was done using 1, the two active analogues 13b and 13c, and the inactive analogue 13a. All four compounds possessed skeletally similar conformations either at or energetically readily accessible from the global minimum energy conformations. This common conformation of the inactive analogue 13a, however, occupies unique molecular volume space associated with two chlorine atoms, which must also present unique electrostatic properties at the receptor. The conformation-activity relationships discussed may contribute toward deduction of additional structural requirements for pharmacophore optimization and more efficacious antifungal drugs.
AuthorsR G Lovey, A J Elliott, J J Kaminski, D Loebenberg, R M Parmegiani, D F Rane, V M Girijavallabhan, R E Pike, H Guzik, B Antonacci
JournalJournal of medicinal chemistry (J Med Chem) Vol. 35 Issue 22 Pg. 4221-9 (Oct 30 1992) ISSN: 0022-2623 [Print] United States
PMID1433223 (Publication Type: Journal Article)
Chemical References
  • Antifungal Agents
  • Benzofurans
  • Miconazole
Topics
  • Animals
  • Antifungal Agents (chemical synthesis, pharmacology)
  • Benzofurans (chemical synthesis, pharmacology)
  • Candidiasis (drug therapy)
  • Computer Simulation
  • Cricetinae
  • Female
  • Guinea Pigs
  • Mice
  • Miconazole (analogs & derivatives, chemical synthesis, pharmacology)
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Molecular Conformation
  • Structure-Activity Relationship
  • Tinea (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: