HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2alpha.

Abstract
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.
AuthorsJames Fernandez, Ibrahim Yaman, Peter Sarnow, Martin D Snider, Maria Hatzoglou
JournalThe Journal of biological chemistry (J Biol Chem) Vol. 277 Issue 21 Pg. 19198-205 (May 24 2002) ISSN: 0021-9258 [Print] United States
PMID11877448 (Publication Type: Journal Article, Research Support, U.S. Gov't, Non-P.H.S., Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Eukaryotic Initiation Factor-2
Topics
  • Animals
  • Cells, Cultured
  • Eukaryotic Initiation Factor-2 (metabolism)
  • Oxidative Stress
  • Phosphorylation
  • Protein Biosynthesis
  • Rats
  • Ribosomes (metabolism)
  • Tumor Cells, Cultured

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: